Exercises

Determinants

Exercise 1. Compute the determinants of the following matrices.

(a)
$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$, $\begin{pmatrix} 2 & 4 \\ 4 & 7 \end{pmatrix}$
(b) $A = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & -2 \\ 1 & 4 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 5 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$
(c) $\begin{pmatrix} a + b & a - b \\ a - b & a + b \end{pmatrix}$

Exercise 2. Compute the determinants of the following matrices.

(a)
$$A_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & -1 \\ 0 & 0 & 1 & -2 \\ 0 & 1 & 4 & 2 \end{pmatrix}$$
 (b) $A_2 = \begin{pmatrix} 5 & 5 & 1 & 1 \\ 1 & 1 & 1 & 3 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$

Exercise 3. Find a counterexample to show that the statement

$$det(A + B) = det(A) + det(B)$$

is *incorrect*.

Exercise 4. Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & a & 3 \\ 1 & 2 & a \end{pmatrix}$$
 and $B = \begin{pmatrix} b & 1 & 2 \\ -1 & b & 0 \\ 2 & 0 & -1 \end{pmatrix}$.

(a) For which $a \in \mathbb{R}$ do we have det A = 0, det A > 0, det A < 0?

(b) For which $b \in \mathbb{R}$ do we have det(B) = 0?

(c) For which $b \in \mathbb{R}$ is det(B) maximal?

Exercise 5 (optional). Let $A \in \mathbb{R}^{n \times n}$ be a quadratic matrix and $b \in \mathbb{R}^n$ some vector. Then we define

$$A_{i} := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1i-1} & b_{1} & a_{1i+1} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i-1} & b_{2} & a_{2i+1} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni-1} & b_{n} & a_{ni+1} & \cdots & a_{nn} \end{pmatrix}$$

the matrix A where the i-th column is replaced by the vector b. Then **Cramer's rule** states that the vector x with

$$x_i := \frac{\det A_i}{\det A}$$

is the unique solution of Ax = b (as long as det $A \neq 0$).

1. Compute the solution of

(a)
$$\begin{pmatrix} 1 & 4 \\ 2 & 0 \end{pmatrix} x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix} x = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$

with Cramer's rule.

2. Compute the solution of

$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 2 \\ -1 & 1 & 0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix}$$

with Cramer's rule.