Exercises

Determinants

Exercise 1. Compute the determinants of the following matrices.
(a) $\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right), \quad\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right), \quad\left(\begin{array}{ll}2 & 4 \\ 4 & 7\end{array}\right)$
(b) $A=\left(\begin{array}{rrr}2 & 3 & -1 \\ 0 & 1 & -2 \\ 1 & 4 & 2\end{array}\right), \quad B=\left(\begin{array}{lll}5 & 5 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1\end{array}\right)$
(c) $\left(\begin{array}{ll}a+b & a-b \\ a-b & a+b\end{array}\right)$

Exercise 2. Compute the determinants of the following matrices.
(a) $\quad A_{1}=\left(\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 0 & 2 & 3 & -1 \\ 0 & 0 & 1 & -2 \\ 0 & 1 & 4 & 2\end{array}\right)$
(b) $A_{2}=\left(\begin{array}{llll}5 & 5 & 1 & 1 \\ 1 & 1 & 1 & 3 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2\end{array}\right)$

Exercise 3. Find a counterexample to show that the statement

$$
\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)
$$

is incorrect.
Exercise 4. Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & a & 3 \\ 1 & 2 & a\end{array}\right)$ and $B=\left(\begin{array}{rrr}b & 1 & 2 \\ -1 & b & 0 \\ 2 & 0 & -1\end{array}\right)$.
(a) For which $a \in \mathbb{R}$ do we have $\operatorname{det} A=0, \operatorname{det} A>0, \operatorname{det} A<0$?
(b) For which $b \in \mathbb{R}$ do we have $\operatorname{det}(B)=0$?
(c) For which $b \in \mathbb{R}$ is $\operatorname{det}(\mathrm{B})$ maximal?

Exercise 5 (optional). Let $A \in \mathbb{R}^{n \times n}$ be a quadratic matrix and $b \in \mathbb{R}^{n}$ some vector. Then we define

$$
A_{i}:=\left(\begin{array}{cccccccc}
a_{11} & a_{12} & \cdots & a_{1 i-1} & b_{1} & a_{1 i+1} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 i-1} & b_{2} & a_{2 i+1} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n i-1} & b_{n} & a_{n i+1} & \cdots & a_{n n}
\end{array}\right)
$$

the matrix A where the i-th column is replaced by the vector b. Then Cramer's rule states that the vector x with

$$
x_{i}:=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}
$$

is the unique solution of $A x=b$ (as long as $\operatorname{det} A \neq 0$).

1. Compute the solution of
(a) $\left(\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right) x=\binom{1}{1}$
(b) $\left(\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right) x=\binom{2}{-2}$
with Cramer's rule.
2. Compute the solution of

$$
\left(\begin{array}{ccc}
1 & 2 & 0 \\
2 & 0 & 2 \\
-1 & 1 & 0
\end{array}\right) x=\left(\begin{array}{c}
1 \\
2 \\
-4
\end{array}\right)
$$

with Cramer's rule.

